
1

SRBench++ : principled benchmarking of symbolic
regression with domain-expert interpretation

F. O. de Franca∗, M. Virgolin†, M. Kommenda¶, M. S. Majumder‡, M. Cranmer‖, G. Espada††, L. Ingelse††,
A. Fonseca††, M. Landajuela‡‡, B. Petersen‡‡, R. Glatt‡‡, N. Mundhenk‡‡, C. S. Lee‡‡, J. D. Hochhalter

x
,

D. L. Randall
x
, P. Kamienny

xi
, H. Zhang

xii
, G. Dick

xiii
, A. Simon

xiv
, B. Burlacu¶, Jaan Kasak

xv
, Meera

Machado
xv

, Casper Wilstrup
xv

, W. G. La Cava‡

Abstract—Symbolic regression searches for analytic expres-
sions that accurately describe studied phenomena. The main
promise of this approach is that it may return an interpretable
model that can be insightful to users, while maintaining high
accuracy. The current standard for benchmarking these algo-
rithms is SRBench, which evaluates methods on hundreds of
datasets that are a mix of real-world and simulated processes
spanning multiple domains. At present, the ability of SRBench
to evaluate interpretability is limited to measuring the size of
expressions on real-world data, and the exactness of model
forms on synthetic data. In practice, model size is only one
of many factors used by subject experts to determine how
interpretable a model truly is. Furthermore, SRBench does
not characterize algorithm performance on specific, challenging
sub-tasks of regression such as feature selection and evasion
of local minima. In this work, we propose and evaluate an
approach to benchmarking SR algorithms that addresses these
limitations of SRBench by 1) incorporating expert evaluations
of interpretability on a domain-specific task, and 2) evaluating
algorithms over distinct properties of data science tasks. We
evaluate 12 modern symbolic regression algorithms on these
benchmarks and present an in-depth analysis of the results,
discuss current challenges of symbolic regression algorithms and
highlight possible improvements for the benchmark itself.

Index Terms—Symbolic Regression, Competition, Inter-
pretable Machine Learning

I. INTRODUCTION

∗Center for Mathematics, Computation and Cognition (CMCC), Heuristics,
Analysis and Learning Laboratory (HAL), Federal University of ABC, Santo
Andre, Brazil.
†Evolutionary Intelligence group, Centrum Wiskunde & Informatica, Sci-

ence Park 123, Amsterdam, Netherlands.
‡Computational Health Informatics Program, Boston Children’s Hospital,

Harvard Medical School, Boston, USA.
¶Heuristic and Evolutionary Algorithms Laboratory (HEAL), University of

Applied Sciences Upper Austria, Hagenberg, Austria.
‖Center for Computational Astrophysics, Flatiron Institute and Department

of Astrophysical Sciences of Princeton University, USA.
††LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Por-

tugal.
‡‡Computational Engineering Division, Lawrence Livermore National Lab-

oratory, Livermore, USA.x
University of Utah, Department of Mechanical Engineering, Utah, USA.xi
Meta, FAIR, France.xii
Victoria University of Wellington, School of Engineering and Computer

Science, New Zealand.xiii
University of otago, Department of Information Science, New Zealand.xiv
Institut für Angewandte Physik, Universität Tübingen; Max Planck

Institute for Intelligent Systems, Tübingen, Germanyxv
Abzu AI, Orient Plads 1, Nordhavn 2150, Denmark

Preprint Under Review. Corresponding author: W. G. La Cava (email:
william.lacava@childrens.harvard.edu)

THe goal of symbolic regression (SR) [1] is to find a
parameterized function f(x, θ) in the form of an analytic

expression that best fits the given data. Such expressions may
describe non-linear interactions with a similar accuracy to that
of opaque models (e.g., deep neural networks or tree ensem-
bles), while making it possible for humans to understand their
behavior in great detail like transparent models do (e.g., linear
models or decision trees). Consequently, SR has been used to
uncover new phenomena from collected data, extending our
knowledge of physics [2], chemistry [3], medicine [4], and
other fields.

Despite its utility, the SR problem is NP-hard [5]; conse-
quently, a number of distinct fields have proposed algorithms
to tackle it, from evolutionary computation to Bayesian op-
timization to deep learning [6, 7, 8]. In an effort to bridge
existing gaps between the communities and draw a picture
of the state of the art in SR, a benchmark platform called
SRBench1 was recently proposed [9]. SRBench is a resource
that includes different SR methods as well as other machine
learning (ML) methods, and evaluates expression accuracy,
simplicity, and the algorithm’s capability of re-discovering the
data-generating function on physical problems. The results
put forward by SRBench showed that recent SR algorithms
based on genetic programming (GP) tend to be the best per-
forming on real-world tabular problems. Moreover, SRBench
contributed to a growing body of literature demonstrating that
SR approaches perform as well as or better than ML methods
commonly accepted to be the state-of-the-art (SotA) for this
task [10, 11, 12].

Notwithstanding the importance of such results, a number
of interesting questions on SR remain unanswered to date.
For example, SRBench does not evaluate how well each SR
algorithm behaves with respect to distinct properties of real-
world data, such as presence of noise, redundant features,
or extrapolation behavior outside of the training distribution.
Furthermore, SRBench, like many benchmarks of SR algo-
rithms, has a limited ability to benchmark the interpretability
of models, which frequently requires subjective input from
model users with domain expertise.

In this paper we describe an extended benchmark, SR-
Bench++ , that complements and extends SRBench by propos-
ing specific tasks not studied in the original benchmark, and
soliciting expert feedback for evaluating model rankings. The

1https://cavalab.org/srbench

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3423681

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://cavalab.org/srbench


2

proposed benchmark integrates with the SRBench framework
and provides a separate focus from prior work. Whereas
SRBench focused on the expected rank of an SR algorithm
w.r.t. an arbitrary dataset, SRBench++ verifies how well each
algorithm behaves when challenged with specific tasks. To
that end, we considered a number of assessment criteria that
go beyond expression accuracy and length: feature selection,
sensitivity to local optima, accuracy in the extrapolation
regime, sensitivity to noise, rediscovery of known laws and,
importantly, interpretability according to an expert of the field
for a real-world use, i.e., forecast of key indicators for the
COVID-19 pandemic. To ensure the comparison was fair,
we asked the participants to submit their algorithms through
SRBench system while concealing these new benchmarks.
As such, participants did not have any prior information
regarding the tasks. This resulted in the evaluation of 12
distinct algorithm submissions based on GP, deep learning, and
combinations thereof, developed by research teams spanning
industry and academia.

In the following sections, we describe the rationale behind
our design choices for SRBench++ and report an in-depth anal-
ysis of SR algorithms on this new benchmark. We leverage this
analysis to identify current research challenges and opportuni-
ties for SR with respect to data science applications as well as
benchmarking. In Section II we give a brief introduction to SR
and the current SotA. Section III we describe the benchmark
rules, tasks, evaluation and competitors. In Section IV we show
and analyse the obtained results with focus on the winning
entries. Finally, Section V discuss the results summarizing the
insights obtained from this benchmark and we emphasize the
current challenges of SR research. We conclude this paper with
some final thoughts and future steps in Section VI.

II. BACKGROUND

SR is the problem of searching for a closed-form expression,
i.e. that best fits the available data by composing simpler
functions (often called primitives) from an user-defined set.
This search is usually guided by a loss function L(y, f(x, θ))
that measures the approximation error of the regression model,
f(x, θ), according to the measured target, y. The main advan-
tages of creating an analytic expression are the possibilities
for manual inspection, debugging, and adaptation by the
practitioner. This manual manipulation can lead to a better
understanding of the model, improve the accuracy of the
model, or allow specialists to incorporate expert knowledge.
Apart from the manual manipulation, we can also analyse the
behavior of the model using common regression tools [13, 14].
Although simple models based on analytic expressions may
be overlooked in lieu of complex, opaque models, they often
exhibit similar accuracy in practice [9, 15]. Specifically for
SR, there is evidence that analytic expressions excel at ex-
trapolating outside the training data region in comparison to
gradient boosting and neural networks [16].

Although SR has some advantages over other regression
methods, until recently, the adoption of SR in practice has
been limited for a number of reasons:

• longer training time compared to traditional regression;

• a lack of implementations in easy-to-use toolboxes;
• the difficulty of customizing existing toolboxes;
• a lack of supporting tools to interpret generated models;
• a smaller and more insular research community compared

to other ML fields; and
• a lack of shared dependencies / platforms between meth-

ods and toolboxes.
Attempts to address these limitations began with Orze-

chowski et al. [10] and led to the creation of SRBench [9].
SRBench not only revealed the benefits of using SR for
prediction tasks but also created an environment that enables
practitioners easy access to different SR approaches using a
scikit-learn-like Python interface.

III. SRBENCH++ : A TASK-DRIVEN BENCHMARK FOR
SYMBOLIC REGRESSION

The goal of SRBench++ was to assess different aspects of
SR algorithms other than prediction accuracy, to understand
the current challenges of SR, and also to further stimulate
the growth of SRBench, which is intended to be a reference
and ever-improving benchmark for tracking the SotA in the
field. We structured the benchmark into three distinct stages.
First, a qualifying stage was used to filter methods that
did not meet a minimal level of performance, defined as
matching/exceeding the accuracy of ordinal least squares on
a subset of publicly available datasets. After the qualifying
stage, the benchmark proceeded in two tracks: a synthetic
track to assess different properties of interest measured against
ground-truth solutions, and a real-world track, where an expert
was asked to judge competing models of COVID-19 spread
using publicly available health data. Qualifying methods were
evaluated on both tracks.

For each one of the 10 individual runs, we specified a
random seed and the candidate SR algorithm had a pre-
specified time budget of 1 hour for datasets up to 1000
samples and 10 hours for datasets up to 10000 samples.
Within this time budget the candidate could perform any
pipeline they wanted (i.e., data pre-processing, hyperparameter
optimization, etc.). Candidates were responsible for ensuring
that the runtime of their pipeline would not exceed the budget.
In order to make comparisons as fair as possible, participants
were not given advance notice of what datasets would be
used for the benchmark. They knew only that datasets would
follow the format of the Penn Machine Learning Benchmark
(PMLB) [17, 18], and that datasets from PMLB would be used
in the qualifying stage.

With the objective of making the benchmark accessible and
reproducible by external peers, we created a new branch in
the SRBench repository2 with instructions on how to add
a new method and how to generate the results on a local
machine. We solicited entries for this benchmark using a
competition held at the GECCO 2022 conference in Boston,
MA. We accepted both to open- and closed-source entries,
provided that the algorithm provided an API compatible with
SRBench. Participants submitted their own algorithms without
any knowledge about the datasets or the tasks. Entries were

2https://github.com/cavalab/srbench/tree/Competition2022

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3423681

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/cavalab/srbench/tree/Competition2022


3

considered “official" once they passed a series of automated
tests facilitated via Github actions.

A. Qualification Track

In the qualification track, we used a selection of 20 PMLB
datasets to verify whether the competitors were capable of
finding better models than a linear model baseline. The main
objective of this track was to filter entrants that did not adhere
to a minimum acceptable prediction accuracy. The evaluation
criteria for this track was the median R2 score on 10 distinct
runs. We ranked the results by the median across the different
datasets and disqualified those approaches that were ranked
lower than using plain linear regression. The chosen datasets
are detailed in the supplementary material.

B. Synthetic tracks

For the synthetic tracks, our goal was to evaluate different
tasks that simulate challenges often observed in real-world
data. By evaluating such challenges, we hope to gain a more
granular understanding of specific tasks for which current
algorithms excel or have room for improvement.

In these tracks, we used multiple evaluation criteria: R2,
simplicity, and a task-specific score for each tasks. We then
computed the aggregated rank as the harmonic means of the
ranks for each criterion for n different data-sets. The harmonic
mean imposes that, to be highly ranked, you cannot have a low
rank in any of the criteria. This avoids the situation that an
SR algorithm returns a very simple model with low R2 and
still ranks high among the competitors.

The simplicity score is defined as round(− log5(s), 1),
where s is the number of nodes in the expression tree after
being simplified by sympy [19], and round(x, n) rounds the
value x to the n-th place. Rounding was introduced to provide
some tolerance for similarly-sized expressions.

We tested 5 different tasks in this track:

1) Rediscovery of the exact expression: the SR model
must match the exact generating function of the dataset.

2) Selection of relevant features: the SR model must only
use relevant features, discarding any noisy feature.

3) Deceptive shortcuts: the SR model should be composed
of noise-free, low-level features instead of noisy inter-
actions of the original features.

4) Extrapolation accuracy: given a dataset with a limited
range on the variables’ domains, the SR model should
behave as intended outside this range.

5) Sensitivity to noise: given different levels of noise
applied to the target value, the SR algorithm should
recover an expression close to the original function.

In the following subsections we will explain each one of
these tasks in further details with the data generating process
and evaluation criteria.

1) Rediscovery of exact expression: In this task, the SR
algorithm should return a model that is within a constant
(multiplicative or additive) factor of the generating function.
To assess this, we rely on the ability of sympy to manipulate

TABLE I
GENERATING FUNCTIONS FOR THE REDISCOVERY OF EXACT EXPRESSION

TASK AND THEIR CORRESPONDING DEGREE OF DIFFICULTY.

Function Difficulty Generating Function

f1(x) Easier 0.4x1x2 − 1.5x1 + 2.5x2 + 1

f2(x) Easy f1(x) + log (30x2
3)

f3(x) Medium f1(x)

0.2(x2
1+x2

2)+1

f4(x) Hard f1(x)+5.5 sin (x1+x2)

0.2(x2
1+x2

2)+1

expressions algebraically and evaluate the equivalence of two
expressions. The specific property measure is:

exact(ftrue, fpred) =

1 if isNumber(ftrue − fpred)
or isNumber(ftrue/fpred)

0 otherwise

where isNumber returns true if the expression is a constant
value and false otherwise. Assuming that the results of the
algebraic −, / operators will be simplified. The idea of this
measure is that if fpred is equal to ftrue except for an additive
or multiplicative constant value, it will return success (1),
otherwise it fails (0). The main drawback of this measure is
that it cannot measure how close the expression is from the
ground-truth and it will not detect if an expression is equal to
the true but with an additive and multiplicative constant.

For this task, we have tested four increasingly difficult
generating functions departing from a base function (f1) and
introducing nonlinear terms. Table I shows the corresponding
generating functions.

2) Selection of relevant features: For this task, we created
datasets with 20 features following the generating function:

0.11x3
1+0.91x3x5+0.68x7x9+0.26x2

11x13+0.16x15x17x19. (1)

As we can see from Eq. 1, the variables with an even index
are not used when generating the dataset (they are random
variables unrelated to the function). The main goal is that the
SR model identifies and uses only the odd indexed features.
For this purpose, we introduce the specific score for this task
given by:

feature-select(ftrue, fpred) =
false-feats− false-sel-feats

false-feats
,

(2)
where false-feats is the set of random valued features and
false-sel-feats is the set of those noisy features used by the
SR model. This measure is equivalent to the Jaccard Index
between the set of false features and the set of selected false
features and will return 1 if the model does not use any noisy
feature and 0 if it uses all of them. There are also three
difficulty levels in this task – easy, medium, hard – that are
created by adding different level of noise to the target value
and replacing the target with:

ynoise = N

(
y, σy

√
ratio

1− ratio

)
(3)

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3423681

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



4

where ratio is the noise level. The ratio of each difficulty
setting is 0.025 for easy, 0.05 for medium, and 0.1 for hard.

3) Deceptive shortcuts: For this task, the dataset contains
the original features and some meta-features that are higher-
level building blocks of the generating function. However,
crucially, the data regarding the meta-features contains noise.
Therefore, a good but suboptimal model can be constructed by
combining the meta-features instead of the original features.
We defined the meta-features (without noise) as:

f(x) = 0.77x1x2︸ ︷︷ ︸
g1(x)

+1.52x2x3︸ ︷︷ ︸
g2(x)

+1.2x2
4︸ ︷︷ ︸

g3(x)

+0.31x1x4x5︸ ︷︷ ︸
g4(x)

(4)

+0.23x3x4x5︸ ︷︷ ︸
g5(x)

.

and the generating function with n meta-features is given by
fn(x) =

∑n
i=1 gi(x).

The corresponding dataset is built as a list of samples in the
format [x1, x2, x3, x4, x5, g1 + ε, . . . , gn + ε, fn(x)], where ε
is an additive noise following Eq. 3 with a ratio of 0.1. Since
noise is added to the data of the meta-features g, the optimal fit
to fn can only be recovered if the meta-features are ignored,
and the original features x are used. There are also 3 levels
of difficulty controlled by the value of n: easy with n = 3,
medium with n = 4, hard with n = 5. The task-specific score
used here is the same as the one for the feature selection task.

4) Extrapolation accuracy: The goal of this tasks is to
evaluate the performance of SR models when the validation set
is outside the training data domain. This is a tricky situation
as by fitting the model on a limited space there can be
many equally good models that behaves differently outside the
training boundaries. Models are thus rewarded for choosing
a minimally complex hypothesis among those describing the
training data. For this task we used the generating function:

f(x) = erf(0.22x) + 0.17 sin (5.5x), (5)

where erf is the error function defined as

erf(z) =
2√
π

∫ z

0

e−t2dt.

Besides not having an analytic solution to this problem, the
training and validation datasets were split such as −15 ≤ x ≤
15 for the training set and 15 < x ≤ 40 for the validation set.

The specific measure for this task is the evaluation of the R2

score on the validation data. Like in the other tasks, we created
three different level of difficulties by adding noise following
Eq. 3 with ratios 0.05 (easy), 0.1 (medium), and 0.2 (hard).

5) Sensitivity to Noise: In this task the SR models are
created using a noisy training data and evaluated on a noiseless
validation data. The generating function used was:

f(x) =
0.11x4 − 1.4x3

0.68x2 + 1
.

The different noise ratios were 0.05 (easy), 0.1 (medium),
and 0.15 (hard).

Oct Jan
2021

Apr Jul Oct Jan
2022

Apr

101

102

103

104

105

Co
un

t

m
as

k 
m

an
da

te

no
 m

as
k 

m
an

da
te

m
as

k 
m

an
da

te

no
 m

as
k 

m
an

da
te

Cases
Deaths

Hospitalizations
Completed Vaccinations

Fig. 1. COVID-19 data in New York state from August 2020 to April 30,
2022, used for the real world track. The data consist of COVID-19 cases,
deaths, hospitalizations, completed vaccinations, and policy indicators for
mask mandates (timing shown above) and school closures (not pictured).

C. Real-world track

For the real-world track, the objective was to evaluate the
interpretability of SR in a real-world scenario, rather than
relying on measures of complexity. In real-world scenarios,
the interpretability of a model can be subjective and depends
on the expertise of specialists from the domain of application.
To this end, we tested the ability of competitor methods to
generate explainable predictive models of COVID-19 cases,
hospitalizations, and deaths.

The task was constructed using time-series data for daily
numbers of cases, hospitalizations, and deaths in New York
state between August 2020 and April 30, 2022. We utilized
an existing collation of these data from the Github repository
https://github.com/reichlab/covid19-forecast-hub/. In addition,
we collected data on covariates hypothesized to be associ-
ated with disease outbreak, including policy measures (mask
mandates, school closures) and daily and total vaccinations.
A summary of the data is given in Fig. 1. Each method was
tasked with projecting future counts of cases, hospitalizations,
and deaths using historical data.

Time series data were preprocessed by replacing outliers
(±4σ) with the median value in a one week window. After-
ward, we smoothed the measurements with an exponentially
weighted moving average.

Models were developed to predict the count of cases,
hospitalizations or deaths with a two week horizon using data
from the prior two weeks (i.e., 14 day look-ahead models with
a 14 day lag). The lag and lookahead window were chosen
based on discussions of utility with the expert reviewer. At
time t, the target label corresponds to yt+h where h is the
prediction horizon. For each prediction time t, each time series
x, and each day in the lag period i, we extracted three features:
1) the observed value i days prior, i.e. xt−i; 2) the difference
between the current value and the value i days prior, i.e. x∆i;

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3423681

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/reichlab/covid19-forecast-hub/


5

and 3) the cumulative sum of the values until the current
timestep, xtot.

The training and test sets were created by alternating
between 5 weeks and 3 weeks chunks, respectively, so that
the algorithms would have samples from the entire duration
of the data collection.

All the algorithms were executed for 10 times for each
dataset, resulting in 10 models per algorithm. We selected
the best model w.r.t. the R2 score on the test set as the
representative model for each candidate algorithm. The best
models were evaluated by an infectious disease expert (Dr.
Majumder) using a trust score ranging from 1 (strong distrust)
to 5 (strong trust). The candidate model’s final score was taken
to be the harmonic mean between accuracy, simplicity, and this
expert trust score.

D. Algorithm entries

A total of 13 teams participated in the benchmark, including
1 withdrawal. For brevity, all methods are summarized in
Table II. We report a description of each method submitted
by the participants in the Supplementary Material. We note
that GPZGD was a late submission, and was only evaluated in
the qualification stage of the benchmark.

IV. RESULTS

This section presents a detailed analysis of the results for
each track of the benchmark. A summary of these results can
be found at the benchmark website3.

A. Qualification Track

The rank of the tested SR methods for the qualification
track is reported in Fig. 2. From this figure we can see that
most of the competitors found better models than the linear
regression. In this stage, the SR methods TaylorGP and nsga-
dcgp were disqualified. The former simply returned linear
models while the latter returned some slightly better models
and some slightly worse than linear regression. Even though
E2ET was better than linear at the median score, it also found a
worse than linear model in some occasions. One reason being
that this algorithm can only handle datasets up to 10 variables
and some of those datasets had more than that. On the other
side of the spectrum, we have Operon, PS-Tree and GPZGD as
the most accurate models for this selection of datasets.

B. Synthetic Benchmark Track

Fig. 3 shows the aggregated rank comprising every task
of the synthetic benchmark track. As we can see from this
figure QLattice ranked first, followed by pysr and uDSR when
considering the harmonic mean of all three criteria. Notice that
the higher the value of the rank, the better; the reason for this
is that the harmonic mean penalizes small values more, as
per our intention to penalize models that does not satisfy all
criteria. We can also see from this plot that there is an overlap

3https://cavalab.org/srbench/competition-2022/

10 8 6 4 2 0 2
R2 test rank difference from LinearRegression (lower is better)

operon
PS-Tree
gpzgd

QLattice
uDSR
Bingo

eql
pysr

geneticengine
E2ET

LinearRegression
TaylorGP

nsga-dcgp

al
go

rit
hm

Fig. 2. Rank of the SR methods for the qualification track calculated as
the median R2. In this plot, the lower the value the better. The shaded area
depicts the disqualified competitors.

2.5 5.0
Overall Score

QLattice
pysr

uDSR
operon

Bingo
E2ET

geneticengine
eql

PS-Tree
2.5 5.0 7.5

R2 Test 
0 5

Simplicity 
2.5 5.0 7.5
Property Score 

Fig. 3. Aggregated results for all tasks in the Synthetic Benchmark Track.
The leftmost plot presents the distribution of the harmonic mean of all three
criteria, the medians of this plot was used to decide the winner. The next three
plots shows the distribution of R2, simplicity, and task-specific, respectivelly.

in the distribution among the contenders, suggesting that the
results may not be statistically significant.

Regarding R2 score, operon returned the best models fol-
lowed by QLattice and PSTree. Looking at the simplicity
scores, pysr, QLattice, and Bingo were the top three, and for
the property specific score the best algorithms are QLattice,
pysr, and Operon. QLattice is among the top-3 in every criteria,
corroborating with the first place in the harmonic mean of the
ranks.

We next tested for statistically significant differences in har-
monic mean scores among algorithms across all the synthetic
track benchmarks. Supplemental Fig. 2 shows the critical
difference diagrams, using the Nemenyi test (α = 0.05). When
considering all tasks together, the top five Ranking algorithms
did not exhibit significance differences among their results.

1) Rediscovery of exact expressions: In Fig. 4 we can see
the results for the rediscovery of exact expression task grouped
by the different levels of difficulties. The first observation is
that most of the algorithms are capable of finding accurate
models (with R2 higher than 0.9) on every level of difficulty,
the only exceptions being Bingo, geneticengine, E2ET on the
higher difficulty levels. They are also capable of maintaining a
similar level of simplicity in comparison to each other, except
for PS-Tree that created more complex models.

Regarding the recovery of the expression, we can see that

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3423681

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://cavalab.org/srbench/competition-2022/


6

TABLE II
SUMMARY OF THE METHODS SUBMITTED TO THE BENCHMARK. FOR METHOD CLASS, WE USE: EA=EVOLUTIONARY ALGORITHM (E.G., GP), DL=DEEP

LEARNING, MIX=COMBINATION OF MULTIPLE CLASSES.

Name Class Code Brief description

Bingo [20] EA URL Evolves general acyclic graphs with a linear representation. Includes coefficient fine-tuning, algebraic simplification, and co-
evolution of fitness predictors.

E2ET [8] DL URL A pre-trained transformer that predicts SR models directly from the data. Predicted models are then fine-tuned and the best is
returned.

EQL [21] DL URL Consists of a fully-differentiable, shallow neural network that contains SR operators as activations. The L0 loss is used to prune
the network.

GeneticEngine [22] EA URL Uses strongly-typed and grammar-guided GP. For this benchmark, no domain-specific information was needed for the grammar.
NSGA-DCGP EA URL Combines differentiable cartesian GP [23] with the non-dominated sorting genetic algorithm II (NSGA-II) to simultaneously

discover short and accurate models.
Operon [24] EA URL C++-coded GP, where fine-tuning is realized with the Levenberg-Marquardt algorithm. It is paired with Optuna for tuning search

hyper-parameters.
PS-Tree [25] MIX URL Combines decision trees, GP, and ridge regression within the evolutionary process. It is capable of tackling the SR problem in a

piece-wise fashion.
PySR [26] EA URL Uses tree-based expressions, tournament selection, and local leaf search. It further uses multiple populations during the search.
QLattice [27] EA URL Uses a probability distribution, updated over the iterations, to sample increasingly better solutions. It includes fine-tuning and

more.
TaylorGP [28] EA URL Combines GP with Taylor polynomial approximations. It uses Taylor expansions to identify polynomial features and decompose

the problem.
uDSR [29] MIX URL Unified framework for SR that combines: recursive problem simplification, neural-guided search, large-scale pre-training, sparse

linear regression, and GP.
GPZGD [30] EA URL Koza-style canonical GP with the addition of stochastic gradient descent to tune coefficients during the evolution.

0.8 0.9 1.0
R2 Test

QLattice
pysr

uDSR
operon

Bingo
E2ET

geneticengine
eql

PS-Tree
0.00 0.25 0.50 0.75

Simplicity
0.0 0.5 1.0

Exact Solution Rate

0-easier 1-easy 2-medium 3-hard

Fig. 4. Distribution of ranks for the discovery of exact expressions. Higher
rank values (to the right) are better.

this was only achieved for problems in the easier and easy
difficulty levels. Further, only pysr, uDSR, operon, and Bingo
were capable of finding exact solutions in these levels. It
should be highlighted that uDSR found a perfect match in
every run for those two levels.

By selecting the model with the highest harmonic mean rank
between the three criteria, we found models very close to the
ground-truth obtained by Bingo and pySR. For the easier level,
Bingo found the following expression:

f(x) = 0.4× (x1 + 6.25)× (x2 − 3.75) + 10.37

that matches the generating function exactly after some alge-
braic manipulation.

The other two difficulty levels were particularly hard for the
SR algorithms. One possible reason is that SR usually have
difficulties handling rational functions due to using protected
division or replacing the division operator by the analytic
quotient to avoid partiality. Using the same criteria as above,
the best model returned by operon for the medium difficulty
level resembled the true expression:

f(x) =
−1.66x1 + (−0.02x1 − 0.15) (−16.15x2 − 6.46)

(0.2x2
1 + 1)

(
0.19x2

2

0.2x2
1+1

+ 1
)0.5 (

0.21x2
2

0.2x2
1+1

+ 1
)0.5

(6)
If we change 0.19x2, 0.21x2 both to 0.2x2, we get an

expression that, after some algebraic manipulation, becomes
the true expression (Table I). This reveals some problems
related to the internal optimization of the numerical parameters
that can hinder the search for the correct expression: i)
the expression may be ill-conditioned [31]; ii) it may not
have reached the local optimum (computational budget and
accuracy trade-off); iii) it may have converged to a bad
local optimum; iv) it can bias the search to overparametrized
expressions [32]. This limits the application of an algebraic
simplification to alleviate this problem, as seem in the previous
example.

2) Selection of relevant features: Fig. 5 shows the distribu-
tion of ranks for the task of using only the relevant features in
the model. Analysing the common criteria for all tasks, we can
see that PS-Tree stands out as the most accurate model and the
most complex one at the same time, for every difficulty level.
Incidentally, it is also the algorithm with the smallest scores
for the feature absence score. Being a piecewise approach, it
is likely that it created additional sub-expressions to account
for the additive noise, generating a more complex expression
and making use of almost every feature.

The algorithm pysr obtained the best harmonic mean for all
three levels of difficulty with this model:

f(x) = 7.1x1 + x2x3 + 0.27x2
6x7,

which is very different from the true generating function.
As we can see from this equation, the pysr model uses two

irrelevant features and misses some of the true features. That
being said, we should stress that none of the algorithms were
capable of retrieving the correct expression with a complete

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3423681

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/nasa/bingo
https://github.com/pakamienny/e2e_transformer
https://al.is.mpg.de/research_projects/symbolic-regression-and-equation-learning
https://github.com/alcides/GeneticEngine/
https://github.com/LuoYuanzhen/srbench
https://github.com/heal-research/operon
https://github.com/zhenlingcn/PS-Tree
https://github.com/MilesCranmer/PySR
https://docs.abzu.ai/
https://github.com/KGAE-CUP/TaylorGP
https://github.com/brendenpetersen/deep-symbolic-optimization
http://github.com/grantdick/gpzgd


7

0.50 0.75 1.00
R2 Test

QLattice
pysr

uDSR
operon

Bingo
E2ET

geneticengine
eql

PS-Tree
0.25 0.50 0.75

Simplicity
0.25 0.50 0.75
Feature Absence Score

1-easy 2-medium 3-hard

Fig. 5. Distribution of ranks for the feature selection task. Higher values are
better.

TABLE III
BASELINE FOR THE FEATURE SELECTION TASK USING DIFFERENT

FEATURE SELECTION ALGORITHMS. R2 IS CALCULATED ON THE TEST
USING GRAD. BOOSTING WITH THE SELECTED VARIABLES. FEAT.
IMPORTANCE SELECTS THE FEATURES BASED ON THE WEIGHTS

ASSOCIATED BY GRADIENT BOOST, RFE DOSE THE SAME BUT
RECURSIVELY PICKING ONE BY ONE, KBEST CHOOSES THE TOP-K BASED

ON STATISTICAL TESTS, VARIANCE PICKS THOSE WITH THE MOST
VARIANCE.

Difficulty Selector Feature Absence Score R2

easy Feature importance 0.90 0.64
kbest 0.50 -0.14
rfe 0.50 0.66
variance 0.00 0.63

medium Feature importance 0.90 0.62
kbest 0.50 -0.14
rfe 0.50 0.63
variance 0.00 0.63

hard Feature importance 0.90 0.57
kbest 0.50 -0.14
rfe 0.50 0.60
variance 0.00 0.57

absence of irrelevant features. Overall, this task has proved to
be a challenge for SR models and it shows that SR can possibly
benefit from the application of a feature selection approach
before fitting the data. To establish an expected achievable
feature absence score and R2 on these benchmarks, we applied
off-the-shelf feature selection methods with gradient boosting
as a comparison in Table III. In this case, the feature selection
methods are set to select the correct number of variables
(ten) which simplifies the feature selection problem. This table
shows that SR alone is capable of selecting features better than
simple feature selection methods. On the other hand, the use
of feature importance combined with gradient boosting is on
par with QLattice and pysr. The R2 values, when using this
specific method, are consistent with the top SR algorithms.

3) Deceptive shortcuts: For the local optima task (Fig. 6),
we can see a similar behavior of the feature selection task w.r.t.
the accuracy and simplicity scores. For the feature absence
score, we observe a more spread distribution of the results,
showing that there is a significant difference between the
different difficulty levels. For the easy level, pySR and Operon
used only relevant features in every run. One such example
being the model:

0.8 0.9 1.0
R2 Test

QLattice
pysr

uDSR
operon

Bingo
E2ET

geneticengine
eql

PS-Tree
0.2 0.4 0.6

Simplicity
0.0 0.5 1.0
Feature Absence Score

1-easy 2-medium 3-hard

Fig. 6. Distribution of ranks for the local optima task. Higher values are
better.

80 60 40 20 0
R2 Test

QLattice
pysr

uDSR
operon

Bingo
E2ET

geneticengine
eql

PS-Tree
0.2 0.4 0.6 0.8

Simplicity

1-easy 2-medium 3-hard

Fig. 7. Distribution of ranks for the extrapolation task. Higher values are
better.

f(x) = 3.97x2 (0.19x1 + 0.38x3) + 1.2x2
4,

that corresponds to the exact generating function. For the other
difficulty levels, there were no perfect solutions. The best ones
following the harmonic mean are:

f(x) = 0.77x1x2 + 0.31x1x4x5 + 1.52x2x3 + 1.2x2
4,

for the medium level with operon that also corresponds to the
true model and

f(x) = x10 + 1.53x2x3 + 1.23x2
4 + x6 + x9,

for the hard level with pySR that uses some of the local optima
features to reach an almost perfect solution. As we can see
from these results and Fig. 6, the noise plays an important
role as it masquerades the importance of the true features.
In other words, as much as pySR and Operon are competent
to find the generating function, with too much noise in the
target function, the noisy variables can be confused with the
true variables. This task still presents a challenge and must be
further investigate with more intermediate levels.

4) Extrapolation accuracy: The extrapolation task proved
to be very challenging to SR algorithms, as we can see from
Fig. 7. In this plot we can see that the obtained accuracy for
most of the models were subpar, often with a negative R2 for
the test set, even for the easiest levels.

To illustrate the behavior of models from different levels, we
have selected the best harmonic mean of each difficulty level

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3423681

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



8

−20 −10 0 10 20 30 40

−1

0

1

operon-easy

uDSR-medium

QLattice-hard

ground-truth

Fig. 8. Selected solutions for the extrapolation task with different level of
difficulties. Extrapolation region is between dashed lines.

0.75 0.80 0.85 0.90 0.95 1.00
R2 Test

QLattice
pysr

uDSR
operon

Bingo
E2ET

geneticengine
eql

PS-Tree
0.2 0.4 0.6 0.8

Simplicity

1-easy 2-medium 3-hard

Fig. 9. Distribution of ranks for the noise task. Higher values are better.

as illustrated in Fig. 8. We can see from this plot that Operon
found a very close approximation to the original noiseless
dataset, while QLattice returned models that approximated the
error function without the sine term. The algorithm uDSR
returned a function that approximated part of the interpolation
region, but it was very different on the extrapolation data.

In summary, we can see that these algorithms were capable
of capturing part of the target function missing one simple
component. These results demand a broader investigation on
why none of the algorithms were capable of including the sine
function into the final expression.

5) Sensitivity to noise: Finally, in Fig. 9 we can see the
accuracy and simplicity scores for the sensitivity to noise task.
From this plot we can clearly see the increase in difficulty
as we increase the noise level. Even with the degradation of
accuracy, almost every algorithm is capable of keeping the
simplicity at a high score. Particularly for this task, QLattice,
uDSR, operon, eql, and PS-Tree were capable of maintaining
a relatively high accuracy across all difficulty levels.

C. Real-world track

The expert was presented with a sequence of models with
the necessary information to assess their evaluation. The
evaluation screen contained information for the task (i.e.,
predicting cases, hospitalization, deaths), the event horizon,
algorithm name, R2 score, simplicity score, the regression

TABLE IV
RESULTS FOR THE REAL-WORLD TRACK.

Rank Algorithm Score Rank Algorithm Score
1 uDSR 5.75 5 Bingo 4.66
2 QLattice 5.21 6 pySR 4.17
3 geneticengine 4.99 7 PS-Tree 3.15
4 Operon 4.80 8 E2ET 2.72

Fig. 10. Sample presentation of a uDSR model used for expert assessment
in the real-world track.

model expression, a plot of the true time-series with the
predicted time-series, and a plot of the predicted value versus
the true value. The expert provided us with gestalt expert rating
answering the question “I trust this model" with a scale from
1 (strongly disagree) to 5 (strongly agree). The final score is
the harmonic mean of the model accuracy, simplicity score,
and expert score.

We report the results of this track in Table IV. In this track
the best score was obtained by uDSR followed by QLattice and
geneticengine. Fig. 10 shows a sample result for the prediction
of the number of deaths using uDSR in the form presented
to the expert for scoring. Although multiple approaches found
good models for this task in terms of R2 score, uDSR managed
to return a comparably simple, plausible linear model with one
interaction that generated good predictions.

V. DISCUSSION

Overall, this benchmark provided many insights about the
current state of SR. In the remainder of this section, we
focus on discussing different aspects of the benchmark itself.
Throughout these benchmarks we noticed that there are still
some gaps on the different degrees of difficulty for each task,
filling these gaps is important to highlight the differences
between algorithms and their limitations.

A. Limitations of the benchmark

Regarding the limitations of this benchmark, one observa-
tion is that some algorithms performed better on one track and
worse on another, or even they were better when observing
one of the criteria and worse on another. Although we tried to
balance this by using the harmonic mean, any aggregated final
score is bound to obscure finer details of the results. Looking

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3423681

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



9

at the synthetic tracks, we can see that some algorithms
are biased toward better accuracy, like Operon and QLattice,
while others tend towards simpler models, like pysr. As some
of these approaches employ different mechanisms to find
a balance, would a better tweaking of the hyperparameters
render a better result for those algorithms?

The simplicity measure only takes into account the size
of the expression, but there are some constructs that hinders
the interpretability of an expression without adding too much
to the size. Consider the chain of nonlinear functions, like
f(g(h(x)) that accounts for 4 nodes and a simpler expression
like f(x)+h(x)∗g(x), that accounts for 8 nodes. Even though
the first one is smaller, the second one can be easier to reason
about its behavior than the first. There are some examples of
complexity measures such as in [33, 34].

Another issue is the computational budget, since we have
a limited resource to run the experiments we have to limit
the maximum runtime and repetitions. While the established
runtime can be considered reasonable, a large number of
repetitions could reduce some uncertainties about the results.

Finally, we should stress that there is hardly a single winner
or a single approach that could be named SotA. We have to use
an aggregation score to elect the winner; however, inspecting
the results we can see that it is often the case that there are
different winners on each track and each level.

B. Overall difficulty of the tasks

Assessing the difficulty of the tasks can be challenging since
it is not possible to test the problem instances before the
benchmark due to the risk of biasing the results. As it turns out,
some of the tasks proved to be really challenging. In this paper
we controlled for the difficulty of the benchmarks by adding
noise to the target values, introducing nonlinearity to the base
function, inserting useless features, providing correlated and
noisy features, and limiting the domain of the training data.
Besides these approaches, there are some possibilities yet to
be explored such as different data distributions, discontinuity,
sparsity, and outliers.

For example, in the task of exact solution, just a few
correct expressions were found and only on the easier and
easy difficulties. This has two main reasons: i) any expression
can be written using different alternative expressions such
that the simplification procedure fails to match them; ii) the
optimization of numerical parameters can lead to imprecision
that causes the expression to be close but not equal to the
ground-truth (as in Eq. 6).

The extrapolation task was also difficult for all of the
approaches that approximated the error function well but
without the sine term of the ground truth. On one hand, given
that a certain dataset can have many different solutions inside
the interpolation region that behaves differently outside this
region (see [35]), we cannot expect the algorithm to make
the right choice without any prior information. On the other
hand, none of the algorithms could find a good solution even
for the training data, revealing that the generating function was
already challenging. Finally, the local optima and sensitivity
to noise tasks provided a good balance between difficulties

allowing us to verify that, while current SR algorithms can
find a good solution with low noise data, the effect of the
noise can have a large impact on the quality of the model. In
the local optima task, we can see that the algorithms made a
preference of maximizing simplicity even if that adds noise
to the expression, this can be expected as it is an informed
choice of choosing the expression with the smaller number of
nodes even if that reduces the accuracy a bit.

Overall, it is important that we continuously adapt the
benchmark problems using the information gained by past
benchmarks to improve the difficulty range without introduc-
ing any bias towards any of the competitors. Additionally, a
continuous adaptation would serve to avoid SR approaches
evolving towards optimizing for these specific benchmarks, a
common problem in many fields.

C. Manual inspection is still a challenge

Challenges and opportunities remain for expert assessment
of interpretability as conducted in the real-world track. First
of all, the expert in the field had to evaluate many different
models by looking at the analytic expression (whenever it had
a reasonable size), the interpolation and extrapolation behavior
of the time series, and the accuracy score. Comparing two or
more models can already be challenging even for an expert
in the field, as it requires them to first establish what is an
interpretable model for them. Sometimes this ad-hoc evalu-
ation may lead to some distortions on the result since there
is no way to make a pairwise comparison between models
without a quadratic increase the complexity of the evaluation
task. Furthermore, expert assessments serve as “snapshot”
evaluations of models in contrast to the other computable
metrics that can be easily reproduced by researchers as SR
methods evolve.

D. Model Interpretability

Symbolic Regression is often referred to as a transparent
modeling approach. While there is no consensus on how
to measure interpretability, many measures and subjective
evaluations have a role to play in gaining insight into pro-
cesses through models. In this paper we used the size of
the expressions (as a proxy) and the judgement of an expert
(for the interpretability track) to verify whether SR returns
interpretable expressions. In light of our results, we understand
that this still requires a broader discussion within the SR
community. For example, as argued in[36], a parametric re-
gression model can be seen as a summarization of the available
data in which the parameters have a very specific meaning
in the context of the study. In this view, our desiderata is
to generate a model with the fewest number of parameters
necessary to achieve a good fit. This compression efficiency
can be captured by techniques based on information theory
such as minimium description length[37]. Even after achieving
the desired properties, the interpretation still requires a domain
expert to bring meaning to the results. In the context of XAI
and Evolutionary Computation, SR plays just a partial role in
the possibilities as argued in [38].

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3423681

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10

E. Are we there yet?

In close, with a broad perspective of the results we can say,
while we have witnessed many advances in this field, there
are still some open challenges for the SR community.

One challenge is the support for a customised experience to
the end-user, for example, specifying the degree of importance
for a simpler solution when you have less accurate alternatives.
In this same end, having alternative models that have a similar
training accuracy could help the user to decide which one
has the most probable extrapolation behavior. Additionally,
as much as an analytic solution can be considered more
interpretable than an opaque model, the SR tool should
provide supporting information in the form of uncertainties
quantification, visual behavior, and additional data such as
partial derivatives and properties of the model. A minor issue
is the runtime of these algorithms, as they mostly rely on
evolutionary algorithms, they are usually slower than common
regression algorithms.

Specifically on the assessed tasks, there are still room for
improvement on the treatment of noise and feature selection.
While most algorithms were capable of adequately handling
noise and to remove some of the not useful features, the noise
data still had an impact on the accuracy reducing the R2 by up
to 20%. Also, the removal of not needed features can lead to
even simpler models that are more informative to the end-user.

VI. CONCLUSION

This paper proposed an extension to SRBench benchmark
for Symbolic Regression, called SRBench++ and provided
an in-depth analysis of initial results obtained for 12 SotA
SR algorithms. The main purpose of the benchmark was
to understand how modern SR algorithms handle common
challenges in data science for regression analysis and to have
an indication of where the current SotA stands. For this
purpose we have created different tasks divided in separate
tracks: i) rediscovery of exact expressions; ii) feature selection;
iii) avoiding noisy local optima; iv) accuracy in extrapolation;
v) noisy data. All these tasks are relevant not only to regression
analysis but also for the interpretability of the models. We also
held an additional track with the evaluation of the generated
models on real-world data by an expert in their respective field.

We note that, overall, that there is no dominating algo-
rithm that returns the best model in every criteria within the
benchmark. These results help to understand the advantage
and disadvantages of each approach and it can move the field
forward to better algorithms. As this benchmark was evaluated
in the form of a competition, each participant chose how to
perform the hyperparameter setting (if done at all) and this
choice may also have affected the final results for each algo-
rithm. Also, the choice of programming language may affect
the computational budget available as faster implementations
have the chance to evaluate more solutions. These two aspects
are out of the scope of a general benchmark, but SRBench++
is open sourced, any author can run experiments with different
implementations and settings (see [39]). In the near future, we
plan to release new editions of this benchmark with new and
improved tasks from additional domains and areas of interest.

We will also use different evaluation criteria that can help us
to better understand how each algorithm stands with respect
to distinct challenges.

ACKNOWLEDGMENT

The authors would like to thank all of the competitors
for providing helpful feedback about the competition. The
competition was sponsored by the Computational Health
Informatics Program at Boston Children’s Hospital and
the Heuristic and Evolutionary Algorithms Laboratory
(HEAL) at the University of Applied Sciences upper
Austria. F.O. de Franca was supported by Fundação
de Amparo à Pesquisa do Estado de São Paulo
(FAPESP), grant number 2021/12706-1 and CNPq grant
number 301596/2022-0. G. Espada, L. Inglese, and A.
Fonseca were supported by Fundação para a Ciência e
Tecnologia (FCT) UIDB/00408/2020, UIDP/00408/2020,
SFRH/BD/137062/2018, UI/BD/151179/2021 and
CMU–Portugal Dual Degree PhD Program
(SFRH/BD/151469/2021), CMU–Portugal project CAMELOT
(LISBOA-01-0247-FEDER-045915), RAP project under the
reference (EXPL/CCI-COM/1306/2021). M. Landajuela,
B. Petersen, R. Glatt, N. Mundhenk, and C.S. Lee were
supported by Laboratory Directed Research and Development
project 19-DR-003. Their work was performed under the
auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under contract DE-AC52-
07NA27344. Lawrence Livermore National Security, LLC.
LLNL-JRNL-846810. W.G. La Cava was supported by
National Institutes of Health grant R00-LM012926. M.S.
Majumder was supported in part by grant R35GM146974
from the National Institute of General Medical Sciences,
National Institutes of Health, and grant SES2200228 from the
National Science Foundation. The funder had no role in study
design, data collection and analysis, decision to publish, or
preparation of the manuscript.

DECLARATIONS

F. O. de Franca, M. Virgolin, M. Kommenda, and W. G. La
Cava designed and conducted the competition and analyzed
the results. M. S. Majumder served as domain expert for the
real-world track. The remaining authors participated in the
competition and contributed to this manuscript after results
were announced. The authors have no conflicts of interest to
declare that are relevant to the content of this article.

REFERENCES

[1] J. R. Koza, Genetic Programming: On the Means of
Programming Computers by Means of Natural Selection.
MIT Press, 1992.

[2] M. Cranmer, A. Sanchez Gonzalez, P. Battaglia, R. Xu,
K. Cranmer, D. Spergel, and S. Ho, “Discovering sym-
bolic models from deep learning with inductive biases,”
Advances in Neural Information Processing Systems,
vol. 33, pp. 17 429–17 442, 2020.

[3] A. Hernandez, A. Balasubramanian, F. Yuan, S. A. M.
Mason, and T. Mueller, “Fast, accurate, and transferable

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3423681

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



11

many-body interatomic potentials by symbolic regres-
sion,” npj Computational Materials, vol. 5, no. 1, p. 112,
Nov 2019.

[4] W. G. La Cava, P. C. Lee, I. Ajmal, X. Ding, P. Solanki,
J. B. Cohen, J. H. Moore, and D. S. Herman, “A
flexible symbolic regression method for constructing
interpretable clinical prediction models,” npj Digital
Medicine, vol. 6, no. 1, pp. 1–14, Jun. 2023.

[5] M. Virgolin and S. P. Pissis, “Symbolic regression is
NP-hard,” Transactions on Machine Learning Research,
2022. [Online]. Available: https://openreview.net/forum?
id=LTiaPxqe2e

[6] B. K. Petersen, M. L. Larma, T. N. Mundhenk, C. P.
Santiago, S. K. Kim, and J. T. Kim, “Deep symbolic
regression: Recovering mathematical expressions from
data via risk-seeking policy gradients,” arXiv preprint
arXiv:1912.04871, 2019.

[7] L. Biggio, T. Bendinelli, A. Neitz, A. Lucchi, and
G. Parascandolo, “Neural symbolic regression that
scales,” in International Conference on Machine Learn-
ing. PMLR, 2021, pp. 936–945.

[8] P.-A. Kamienny, S. d’Ascoli, G. Lample, and F. Char-
ton, “End-to-end symbolic regression with transformers,”
arXiv preprint arXiv:2204.10532, 2022.

[9] W. La Cava, P. Orzechowski, B. Burlacu, F. O. de França,
M. Virgolin, Y. Jin, M. Kommenda, and J. H. Moore,
“Contemporary symbolic regression methods and their
relative performance,” arXiv preprint arXiv:2107.14351,
2021.

[10] P. Orzechowski, W. La Cava, and J. H. Moore, “Where
are we now? A large benchmark study of recent symbolic
regression methods,” in Proceedings of the 2018 Genetic
and Evolutionary Computation Conference, ser. GECCO
’18, Apr. 2018.

[11] W. La Cava, T. R. Singh, J. Taggart, S. Suri, and J. H.
Moore, “Learning concise representations for regression
by evolving networks of trees,” in International Confer-
ence on Learning Representations, ser. ICLR, 2019.

[12] R. Shwartz-Ziv and A. Armon, “Tabular data: Deep
learning is not all you need,” Information Fusion, vol. 81,
pp. 84–90, 2022.

[13] J. H. Friedman, “Greedy function approximation: a gra-
dient boosting machine,” Annals of statistics, pp. 1189–
1232, 2001.

[14] G. F. Bomarito, P. E. Leser, N. Strauss, K. Gar-
brecht, and J. Hochhalter, “Automated learning of in-
terpretable models with quantified uncertainty,” arXiv
preprint arXiv:2205.01626, 2022.

[15] C. Rudin, “Stop explaining black box machine learning
models for high stakes decisions and use interpretable
models instead,” Nature Machine Intelligence, vol. 1,
no. 5, pp. 206–215, 2019.

[16] W. Roland, C. Marschik, M. Kommenda, A. Haghofer,
S. Dorl, and S. Winkler, “Predicting the non-linear
conveying behavior in single-screw extrusion: A
comparison of various data-based modeling approaches
used with cfd simulations,” International Polymer
Processing, vol. 36, no. 5, pp. 529–544, 2021. [Online].

Available: https://doi.org/10.1515/ipp-2020-4094
[17] J. D. Romano, T. T. Le, W. La Cava, J. T. Gregg, D. J.

Goldberg, P. Chakraborty, N. L. Ray, D. Himmelstein,
W. Fu, and J. H. Moore, “PMLB v1.0: An open-source
dataset collection for benchmarking machine learning
methods,” Bioinformatics, 2022.

[18] R. S. Olson, W. La Cava, P. Orzechowski, R. J. Ur-
banowicz, and J. H. Moore, “PMLB: A Large Benchmark
Suite for Machine Learning Evaluation and Comparison,”
BioData Mining, 2017.

[19] A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B.
Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore,
S. Singh et al., “Sympy: symbolic computing in python,”
PeerJ Computer Science, vol. 3, p. e103, 2017.

[20] D. L. Randall, T. S. Townsend, J. D. Hochhalter, and
G. F. Bomarito, “Bingo: a customizable framework for
symbolic regression with genetic programming,” in Pro-
ceedings of the Genetic and Evolutionary Computation
Conference Companion, 2022, pp. 2282–2288.

[21] S. Sahoo, C. Lampert, and G. Martius, “Learning equa-
tions for extrapolation and control,” in International
Conference on Machine Learning. PMLR, 2018, pp.
4442–4450.

[22] G. Espada, L. Ingelse, P. Canelas, P. Barbosa, and
A. Fonseca, “Data types as a more ergonomic
frontend for grammar-guided genetic programming,” in
Proceedings of the 21st ACM SIGPLAN International
Conference on Generative Programming: Concepts and
Experiences, GPCE 2022, Auckland, New Zealand,
December 6-7, 2022, B. Scholz and Y. Kameyama,
Eds. ACM, 2022, pp. 86–94. [Online]. Available:
https://doi.org/10.1145/3564719.3568697

[23] D. Izzo, F. Biscani, and A. Mereta, “Differen-
tiable genetic programming,” in Genetic Programming:
20th European Conference, EuroGP 2017, Amsterdam,
The Netherlands, April 19-21, 2017, Proceedings 20.
Springer, 2017, pp. 35–51.

[24] B. Burlacu, G. Kronberger, and M. Kommenda, “Operon
C++ an efficient genetic programming framework for
symbolic regression,” in Proceedings of the 2020 Genetic
and Evolutionary Computation Conference Companion,
2020, pp. 1562–1570.

[25] H. Zhang, A. Zhou, H. Qian, and H. Zhang, “Ps-tree: A
piecewise symbolic regression tree,” Swarm and Evolu-
tionary Computation, vol. 71, p. 101061, 2022.

[26] M. Cranmer, “Pysr: Fast & parallelized symbolic regres-
sion in python/julia,” 2020.

[27] K. R. Broløs, M. V. Machado, C. Cave, J. Kasak,
V. Stentoft-Hansen, V. G. Batanero, T. Jelen, and
C. Wilstrup, “An approach to symbolic regression using
feyn,” arXiv preprint arXiv:2104.05417, 2021.

[28] B. He, Q. Lu, Q. Yang, J. Luo, and Z. Wang, “Taylor
genetic programming for symbolic regression,” arXiv
preprint arXiv:2205.09751, 2022.

[29] M. Landajuela, C. Lee, J. Yang, R. Glatt, C. P.
Santiago, I. Aravena, T. N. Mundhenk, G. Mulcahy,
and B. K. Petersen, “A unified framework for deep
symbolic regression,” in Advances in Neural Information

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3423681

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://openreview.net/forum?id=LTiaPxqe2e
https://openreview.net/forum?id=LTiaPxqe2e
https://doi.org/10.1515/ipp-2020-4094
https://doi.org/10.1145/3564719.3568697


12

Processing Systems, A. H. Oh, A. Agarwal, D. Belgrave,
and K. Cho, Eds., 2022. [Online]. Available: https:
//openreview.net/forum?id=2FNnBhwJsHK

[30] G. Dick, C. A. Owen, and P. A. Whigham, “Feature
standardisation and coefficient optimisation for effective
symbolic regression,” in Proceedings of the 2020
Genetic and Evolutionary Computation Conference, ser.
GECCO ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 306–314. [Online].
Available: https://doi.org/10.1145/3377930.3390237

[31] G. Kronberger, “Local optimization often is ill-
conditioned in genetic programming for symbolic regres-
sion,” in 2022 24th International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Computing
(SYNASC). IEEE, 2022, pp. 304–310.

[32] F. O. de Franca and G. Kronberger, “Reducing over-
parameterization of symbolic regression models with
equality saturation,” in Proceedings of the Genetic and
Evolutionary Computation Conference, 2023, pp. 1064–
1072.

[33] M. Kommenda, A. Beham, M. Affenzeller, and G. Kro-
nberger, “Complexity measures for multi-objective sym-
bolic regression,” in International Conference on Com-
puter Aided Systems Theory. Springer, 2015, pp. 409–
416.

[34] M. Virgolin, A. De Lorenzo, E. Medvet, and F. Ran-
done, “Learning a formula of interpretability to learn
interpretable formulas,” in International Conference on
Parallel Problem Solving from Nature. Springer, 2020,
pp. 79–93.

[35] F. O. De Franca, “Fighting underspecification in sym-
bolic regression with fitness sharing,” in Proceedings of
the Companion Conference on Genetic and Evolutionary
Computation, 2023, pp. 551–554.

[36] E. Russeil, F. O. de França, K. Malanchev, B. Burlacu,
E. E. Ishida, M. Leroux, C. Michelin, G. Moinard,
and E. Gangler, “Multi-view symbolic regression,” arXiv
preprint arXiv:2402.04298, 2024.

[37] D. J. Bartlett, H. Desmond, and P. G. Ferreira, “Ex-
haustive symbolic regression,” IEEE Transactions on
Evolutionary Computation, 2023.

[38] J. Bacardit, A. E. Brownlee, S. Cagnoni, G. Iacca,
J. McCall, and D. Walker, “The intersection of evolu-
tionary computation and explainable ai,” in Proceedings
of the Genetic and Evolutionary Computation conference
companion, 2022, pp. 1757–1762.

[39] B. Burlacu, “Gecco’2022 symbolic regression competi-
tion: Post-analysis of the operon framework,” in Pro-
ceedings of the Companion Conference on Genetic and
Evolutionary Computation, 2023, pp. 2412–2419.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3423681

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://openreview.net/forum?id=2FNnBhwJsHK
https://openreview.net/forum?id=2FNnBhwJsHK
https://doi.org/10.1145/3377930.3390237

	Introduction
	Background
	SRBench++ : a task-driven benchmark for Symbolic Regression
	Qualification Track
	Synthetic tracks
	Rediscovery of exact expression
	Selection of relevant features
	Deceptive shortcuts
	Extrapolation accuracy
	Sensitivity to Noise

	Real-world track
	Algorithm entries

	Results
	Qualification Track
	Synthetic Benchmark Track
	Rediscovery of exact expressions
	Selection of relevant features
	Deceptive shortcuts
	Extrapolation accuracy
	Sensitivity to noise

	Real-world track

	Discussion
	Limitations of the benchmark
	Overall difficulty of the tasks
	Manual inspection is still a challenge
	Model Interpretability
	Are we there yet?

	Conclusion

